Internet-Wide Scanning and its Measurement Applications

Zakir Durumeric

University of Michigan

RIPE 68 - Measurement, Analysis and Tools Working Group

Golden Age of Internet Scanning

As of the last year, it is now possible to scan the entire IPv4 address space in minutes thanks to ZMap and Masscan

Measurement Golden Age: full IPv4 scanning available and IPv6 not widely deployed --- most services still available on IPv4

What can we learn using this global perspective?

What can we do to help network operators?

ZMap: The Internet Scanner

an open-source tool that can port scan the entire IPv4 address space from just one machine in under 45 minutes with 98% coverage

\$ sudo apt-get install zmap \$ zmap -p 443 -o results.csv 34,132,693 listening hosts (took 44m12s) <</pre>

97% of gigabit Ethernet linespeed

ZMap: Fast Internet-Wide Scanning and its Security Applications (<u>https://zmap.io</u>) Zakir Durumeric, Eric Wustrow, and J. Alex Halderman | 22nd USENIX Security Symposium.

ZMap: Fast Internet-Wide Scanning and its Measurement Applications

Ethics of Active Scanning

Considerations

Impossible to request permission from all owners No IP-level equivalent to robots exclusion standard Administrators may believe that they are under attack

Reducing Scan Impact

Scan in random order to avoid overwhelming networks Signal benign nature over HTTP and w/ DNS hostnames Honor all requests to be excluded from future scans

Measurement Case Studies

What can we learn using Internet-wide Internet scanning?

- 1. Widespread Weak Cryptographic Keys
- 2. Analysis of HTTPS Certificate Ecosystem
- 3. The Matter of Heartbleed

Mining Your Ps and Qs Detection of Widespread Weak Keys in Network Devices

Nadia Heninger, Zakir Durumeric, Eric Wustrow, J. Alex Halderman Proceedings of the 21st USENIX Security Symposium, August 2012

Public Keys on the Internet

Uncovering weak cryptographic keys and poor entropy collection

We considered the cryptographic keys used by HTTPS and SSH

	HTTPS	SSH
Live Hosts	12,8 million	10,2 million
Distinct RSA Public Keys	5,6 million	3,8 million
Distinct DSA Public Keys	6.241	2,8 million

There are many legitimate reason that hosts might share keys Hosting providers, large companies (e.g. Google)

Shared Cryptographic Keys

Why are a large number of hosts sharing cryptographic keys?

We find that 5.6% of TLS hosts and 9.6% of SSH hosts share keys in a vulnerable manner

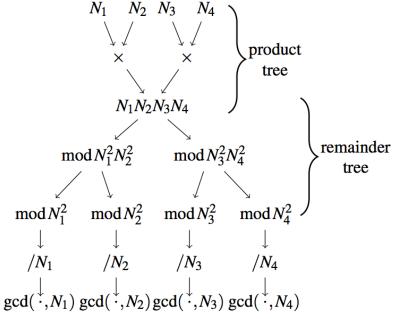
- Default certificates and keys
- Apparent entropy problems

What other, more serious, problems could be present if devices aren't properly collecting entropy?

Factoring RSA Public Keys

What else could go wrong if devices aren't collecting entropy?

RSA Public Key: $n = p \cdot q$, p and q are two large random primes


Most efficient known method of compromising an RSA key is to factor n back to p and q

While *n* is difficult to factor, for

 $N_1 = p \cdot q_1$ and $N_2 = p \cdot q_2$

we can trivially compute

 $p = GCD(N_1, N_2)$

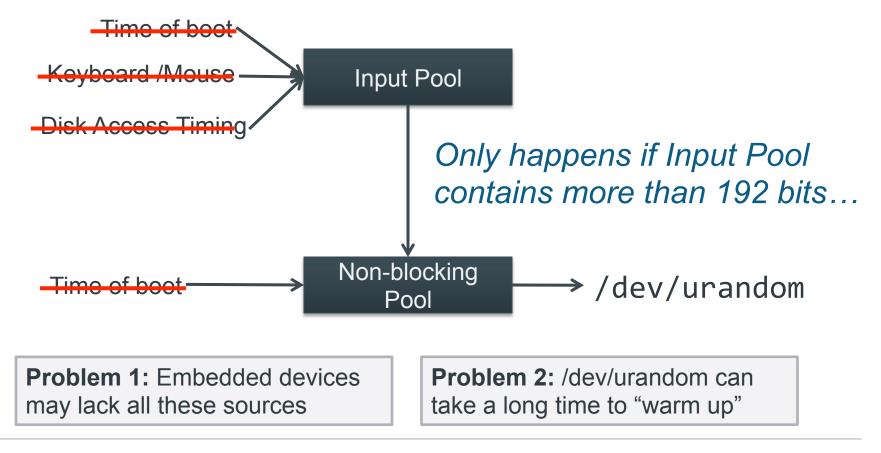
Broken Cryptographic Keys

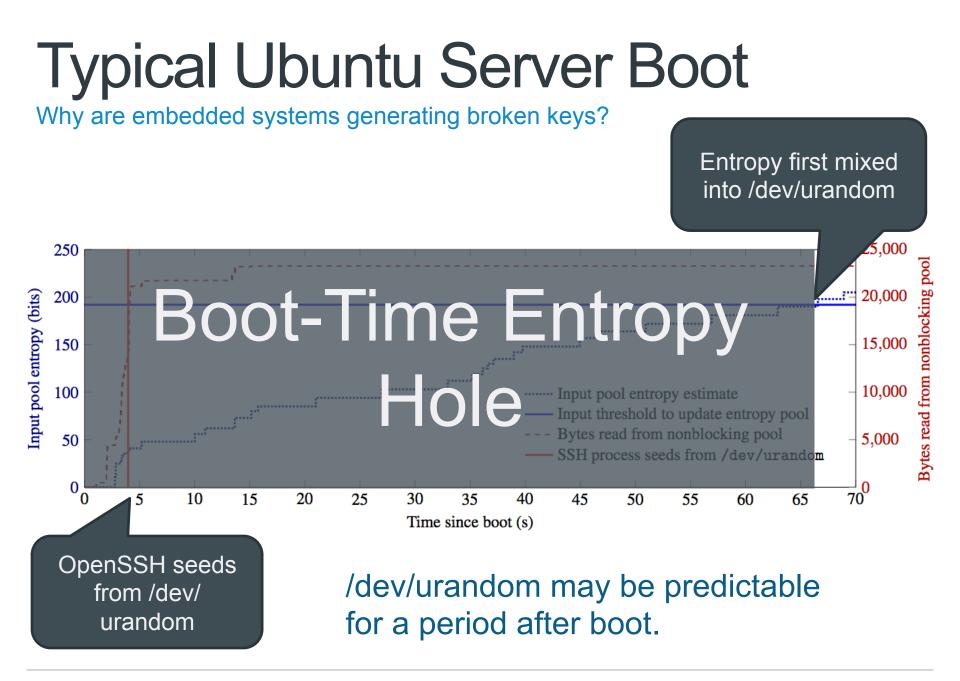
Why are a large number of hosts sharing cryptographic keys?

We find 2,134 distinct primes and compute the RSA private keys for 64,081 (0.50%) of TLS hosts

Using a similar approach for DSA, we are able to compute the private keys for **105,728 (1.03%) of SSH hosts**

Compromised keys are generated by headless or embedded network devices


Identified devices from > 40 manufacturers


Linux /dev/urandom

Why are embedded systems generating broken keys?

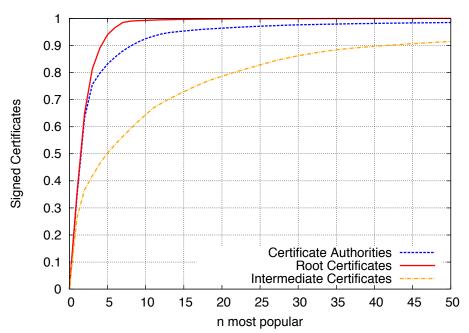
Nearly everything uses /dev/urandom

ZMap: Fast Internet-Wide Scanning and its Measurement Applications

Analysis of the HTTPS Certificate Ecosystem

Zakir Durumeric, James Kasten, Michael Bailey, J. Alex Halderman Proceedings of the 13th Internet Measurement Conference

ZMap: Fast Internet-Wide Scanning and its Measurement Applications


Rampant Certificate Authorities

Daily scans found 88 million total certificates, 9.4 million browser trusted certificates over the last two years

Identified 1,800 CA certificates belonging to 683 organizations

All major roots are selling intermediates to organizations without any constraints

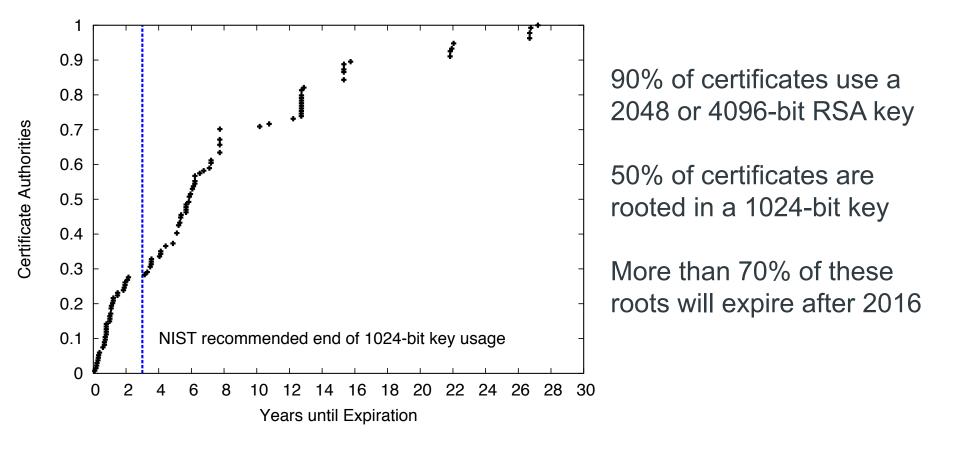
26% of sites are signed by a single certificate!

Ignoring Foundational Principles

What are authorities doing that puts the ecosystem at risk?

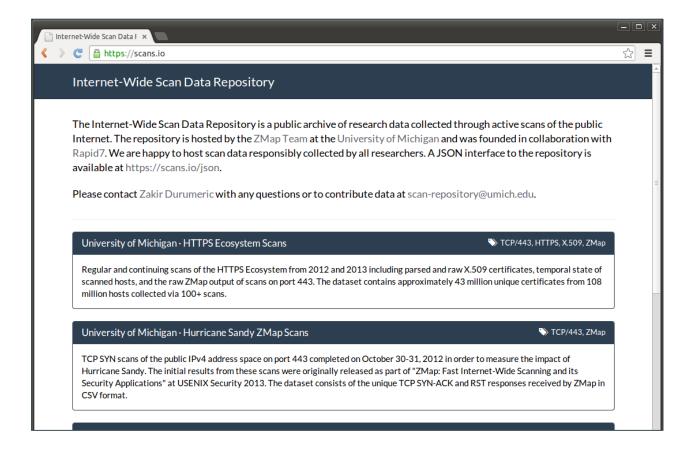
We classically teach concepts such as *defense in depth* and the *principle of least privilege*

We have methods of constraining what CAs can sign for, yet all but 7 of the 1,800 CA certs we found can sign for anything


Lack of constraints allowed a rogue CA certificate in 2012, but in another case prevented 1,400 invalid certificates

Almost 5% of certificates include local domains,

e.g. localhost, mail, exchange


Cryptographic Reality

What are authorities doing that puts the ecosystem at risk?

Scans.IO Data Repository

How do we share all this scan data?

The Matter of Heartbleed

Zakir Durumeric, James Kasten, J. Alex Halderman, Michael Bailey, Frank Li, Nicholas Weaver, Bernhard Amann, Jethro Beekman, Mathias Payer, Vern Paxson

ZMap: Fast Internet-Wide Scanning and its Measurement Applications

Preventing the Spread of Misinformation

https://zmap.io/heartbleed

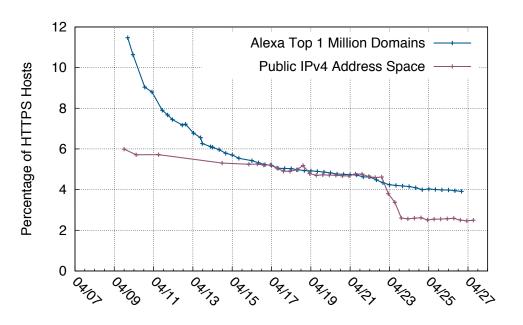
Heartbleed Bug Health Report

The Heartbleed Bug is a vulnerability in the OpenSSL cryptographic library that allows attackers to invisibly read sensitive data from a web server. This potentially includes cryptographic keys, usernames, and passwords. More information and frequently asked questions can be found in the initial disclosure. Information on popular websites that were impacted, but are no longer vulnerable can be found on Mashable's The Heartbleed Hit List: The Passwords You Need to Change Right Now. If you are concerned that a specific website is vulnerable, you can test that website using the Qualys SSL Server Test. If you are a Systems Administrator, the EFF has published Heartbleed Recovery for System Administrators with information on how to protect services.

Most Popular Vulnerable Domains

Below, we list the top 1,000 most popular web domains and mail servers that remain vulnerable to the heartbleed vulnerability as of 4:00 PM EDT on April 16, 2014. More comprehensive lists of vulnerable web servers and mail servers are also available.

Web S	Web Servers			Mail Servers			
Rank	Domain	Vulnerable	Rank	Domain	Vulnerable		
1829	gi-akademie.com	vulnerable	727	turbobit.net	vulnerable		
1863	prezentacya.ru	vulnerable	1700	nmisr.com	vulnerable		
1873	wallstcheatsheet.com	vulnerable	2100	boerse.bz	vulnerable		
1907	semalt.com	vulnerable	2951	ubi.com	vulnerable		
2700	gazzetta.gr	vulnerable	3277	filmifullizle.com	vulnerable		
3159	protothema.gr	vulnerable	3992	uline.com	vulnerable		
3428	text.ru	vulnerable	4081	elektroda.pl	vulnerable		
3451	haodf.com	vulnerable	5186	memecenter.com	vulnerable		

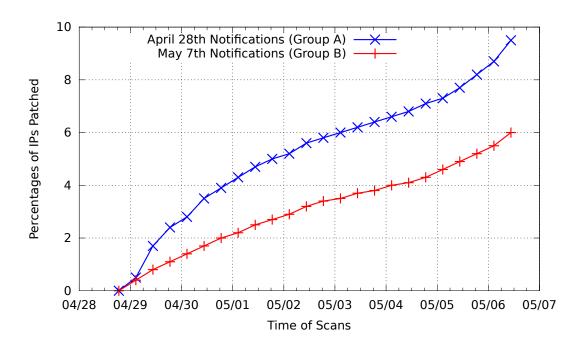

Patching Observations

11% of servers remained vulnerable after 48 hours

Patching plateaued at 4%

Only 10% of sites vulnerable in our first scan replaced their TLS certificates

15% of sites that replaced certificates used vulnerable cryptographic keys


Heartbleed Vulnerable Hosts

Vulnerability Notifications

We notified remaining vulnerable organizations after 2 weeks

Statistically significant impact on patching

Out of 59 human responses: 51 positive, 3 neutral, 2 negative

Impact of Notification

Conclusion

Living in a unique period

IPv4 can be quickly, exhaustively scanned

IPv6 has not yet been widely deployed

ZMap lowers barriers of entry for Internet-wide surveys Now possible to scan the entire IPv4 address space from one host in under 45 minutes with 98% coverage Explored three applications of high-speed scanning

Ultimately hope that ZMap enables future research

Internet-Wide Scanning and its Measurement Applications

ZMap: https://zmap.io Weak Keys: https://factorable.net Public Data: https://scans.io Heartbleed: https://zmap.io/heartbleed

Zakir Durumeric, University of Michigan zakir@umich.edu | @zakirbpd

RIPE 68 - Measurement, Analysis and Tools Working Group