RDL: A programmatic approach
to generating router configurations

RIPE Routing WG, May 15 2014

Benno Overeinder

NLnet
Labs

RDL: The background

ENGRIT: Extensible Next Generation Routing Information Toolset
Improve Internet routing security and stability

Multi-pronged approach, RDL is one aspect

Other aspects will focus on authentication, etc

NLnetLabs has done much work with DNS

RDL development done by Per Bilse (EUnet, AS286)

RDL: The rationale

Global turnover $dozens of millions per hour
Even small problems can be very costly
Router configuration is inherently low level
_arge number of only moderately related detalil
_imited or no verification tools

_Imited scope for inter-ISP routing management

RDL: The idea

A high level Routing Documentation Language
Dual purpose:
1) Architecture independent generation of BGP config:

- RDL->Cisco, RDL->Juniper, RDL->BIRD
- C->68k, C->x86_64, C->ARM

2) Description and publication of routing policies:

- Enable automated verification and proofing
- Improve exchange of information between peers

RDL: Not RPSL NG NG

 RDL will reuse data sources also used by RPSL:
— Some objects
— Publication/repository means, where feasible

e But, more importantly:

— RDL to describe BGP topology
— RDL to cover both iBGP and eBGP peerings
— RDL to fully qualify and identify routing policies

RDL: Also not YANG (RFC6020)

YANG Is geared for NETCONF

YANG and NETCONF are generally focused on
physical Device Configuration and Management

YANG is itself low level and riddled with detall
RDL Is for humans

RDL is focused on a logical and abstract BGP view,
iIndependent of underlying network and devices

YANG could be a compilation target for RDL

RDL: What Is a policy?

Much confusion between Policy and Enforcement
Action

A policy is Thieves will be prosecuted
An enforcement action is Arrest Nosey Parker

Existing tools and approaches focus on enforcement
actions

Quickly degenerate into route filter mechanics

RDL: Policies in 3D

» Arouting policy as seen by RDL has three dimensions
to it:

- Where it applies: topological location

- When it applies: NLRI attributes
- What to do: filtering and attribute manipulation

* Think of it as similar to a piece of legislation, eg speed
limits: Where, When, What

* These three aspects jointly describe a given policy in
Its entirety

RDL: A policy example

Policy: My AS will not announce bogons
RDL's 3D approach:

- Where: all peerings with foreign ASs
- When: prefix is in list of bogons
- What: block it

RDL's BGP topology description is the key to
specifying the Where of a policy

the Where Is statically analysed and applied when
generating configurations

The When and the What are done by the routers

RDL: The language

Designed specifically for the purpose of describing
BGP topologies simply and intuitively

Free form curly brace, recursive, and concatenative
syntax, allowing quick and easy specification of
objects and their location

Borrows inadvertently and disrespectfully from several
unusual languages

Fully dynamically typed and declaration free

RDL: BGP topology

RDL describes BGP topology by way of three logical
components:

- Zones — may contain other zones, and routers
- Routers — may contain one or more BGP peers
- Peers

Structure similar to file system directories
Each object has a number of attributes
Attributes may be inherited from lexical scope

IBGP is configured automatically

RDL: Topology example

hibernia = new(zone) . {
.asn = 5580;
EU = new(zone) . {
NL = new(zone) . {
amsl = new(router) . {
.address = 134.222.1.1;

ripe = new(peer) . { 1.2.3.4, 3333 };

}i
}i
}i
US = new(zone) . { };
APAC = new(zone) . { ... };

}i

RDL: What's In a zone

e Zones are containers for similar policies

often significant geographical correlation

should be chosen to reflect the reality of your network, not
the other way around (your network is the ground, the zone
map is the map)

you decide what your zone map should be, it is there to help
you

again: RDL is all about BGP topology
the zone map identifies reference points for policies

RDL: Policy example

» Policy descriptions follow the topology format

nobogons = new(policy) . {
.where = export peer.asn != peer.router.asn;
.when = nlri.prefix & bogons;
.what = reject;
}i
bogons = { 0.0.0.0/8"+, 10.0.0.0/8"+, 100.64.0.0/10"+, ... };

* Policy syntax is experimental/undecided
» Probably a good idea to stick to general syntax of RDL

RDL: Unusual Example |

hibernia = new(zone) . {
.asn = 5580;
RR1 = new(router) . { 134.222.12.1 };
RR2 = new(router) . { 134.222.14.1 };
EU = new(zone) . {
.ibgp = { RR1l, RR2, *“localmesh” };
NL = new(zone) . {
amsl = new(router) . { 134.222.1.1 } . { ... };
}i
}i
US = new(zone) . { .ibgp = { RR1l, RR2, “localmesh” }; ... };

}i

RDL: Unusual Example Il

* Policy: de-prioritise all EU routes in US
 RDL to the rescue:

EUexport = new(policy) . {

.where import peer.zone <= US && peer.remote.zone <= EU;
.when = ;
.what = local-preference = 90;

}i

e RR1 and RR2 are route reflectors and are therefore
transparent

RDL: Unusual Example Il

Changing IBGP to full mesh requires only a few edits:

hibernia = new(zone) . {
.asn = 5580;
RRI——mnew(routerr——{—3134-222-312+1—F¢
RRZ2Z—=—new(rovtery—{134-222-1t4-1++

EU = new(zone) . {

7 [“ = [
NL = new(zone) . {
amsl = new(router) . { 134.222.1.1 } . { ... };
}i
}i
US = new(zone) . { —ibgp—F+RRI;+—RR2;—“1ecalmesh”™}+ ... };
}i

RDL: Unusual Example IV

« And now RDL's piece de résistance

« Recall the policy: de-prioritise all EU routes in US

EUexport = new(policy) . {

.where = import peer.zone <= US && peer.remote.zone <= EU;

.when = ;
.what = local-preference = 90;

}i

» Absolutely nothing needs to be
done for the IBGP change.

« Jus' like that!

RDL: Policies for the future

As shown, policies are generally modular and
Independent of underlying topology detall.

- Eg adding or deleting a normal router requires no change to
any regular policies, internal or external.

What Iif two peers could exchange policies before
peering? “Here's mine, I've got yours, thank you”.

- Eg “l want a default, and no US routes”; plug in and peer.

Can't be done “Jus’ like that!”, will require either
coordination on parameters or a higher level meta-
description.

Outside current scope of project, but not at all
Impossible.

Acknowledgments

* Job Snijders and Andreas Polyrakis
— valuable discussions
— providing use cases for RDL
— reviewing the previous versions of RDL

RDL: Nirvana?

RDL is all about not configuring routers, but
documenting and programming the AS.

Open source project and open discussions
http://lists.rpsl.net/mailman/listinfo/progress

ENGRIT + admin: benno@nlnetlabs.nl

RDL: pgb@bgpinnovations.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

