DNS Services Update

Anand Buddhdev
K-root

• Business as usual with 17 nodes
• Architectural changes coming up
 - Smaller DNS-in-a-box servers
 - Modest requirements for hosts
 - Current five global nodes will be maintained
 - Phased migration of existing local nodes to new model
 - Increased diversity with BIND, Knot and NSD
Authoritative DNS

• Primary
 - ripe.net, e164.arpa and other forward zones
 - top-level reverse zones of RIPE NCC

• Secondary
 - in-addr.arpa and ip6.arpa
 - 77 ccTLDs
 - forward and reverse zones of other RIRs
 - several miscellaneous zones (e.g. as112.net, afnog.org)
 - over 4,200 reverse zones for LIRs (/16 for v4 and /32 for v6)
Authoritative DNS

- Two active sites - Amsterdam and London
 - Peaks of 120,000 q/s
- Third site in Stockholm ready
 - Arranging transit
 - Will become active by the end of May
- Stockholm site as a backup
 - Add provisioning capability
 - Second distribution site
Secondary DNS for ccTLDs

- Reliable DNS for smaller and developing ccTLDs
- No agreements or SLAs
 - To be addressed by action item 67.1
Bound to BIND

- Until recently, only BIND was in use on the authoritative DNS cluster
 - Mature
 - Smallest memory footprint (11 GB)
 - Add/remove zones without stopping service
 - Views for separation of zones into logical servers

- Main downside
 - Entire cluster vulnerable to the same bug
Motivation for diversity

- **Resilience**
 - Bugs in one application cannot bring down entire cluster

- **Improve software**
 - Exposure to our odd mix of 5200 zones would surely tickle interesting bugs
Requirements for DNS software

- Runs on CentOS Linux
- Easy to package and deploy (RPM)
- Implements DNS and DNSSEC properly
- Runs under supervisors, such as daemontools, upstart and systemd
- Can be reconfigured without stopping service
- Zones can be added or removed without stopping service
Candidates

- Knot DNS
- NSD 4
- Nominum ANS
- BIND 10
- YADIFA
NSD 4

• Built atop NSD 3’s mature DNS code, but with new architecture
• Can add and remove zones on the fly
• Stable master process
 - Allows supervised execution
• Supports all current DNS standards
• Highly responsive team of developers
Knot DNS

- Authoritative DNS server
- Small and light-weight
- Stable master process
 - Allows supervised execution
- Supports all current DNS standards
- Highly responsive team of developers
 - Several features were added at our request
Nominum ANS

- Authoritative name server
- Supports all current DNS standards
- Will be used as a provisioning master next to BIND
BIND 10 and YADIFIA

- BIND 10 was still in development
 - Not ready for production use

- YADIFIA also needs more work
 - No dynamic reconfiguration
 - No NSID
 - Some bugs in notify code
Memory usage

• BIND uses about 11 GB, Knot uses about 17 GB and NSD 4 uses about 25 GB
 - NSD 4 has a “nodb” mode - uses about 17 GB
• Knot’s memory usage will go down with 1.5
Startup time

- BIND 9.9 loads all zones in about 45s
 - BIND 9.10 with the map on-disk format starts in 15s
- Knot takes about 90 seconds
- NSD 4 takes over 3 minutes
 - Zones are loaded serially
Shutdown time

- BIND 9.9 takes about 30 seconds
 - BIND 9.10 stops in about 5 seconds
- Knot takes about 40 seconds
- NSD 4 stops almost immediately
Service separation

- BIND has views
 - Allows serving some zones on their own IP addresses
- Knot and NSD 4 don’t have views
 - Run multiple instances, each with their own config file
 - Managed using upstart (no PID files, process supervision, service dependencies)
Bugs and issues

- NSD 4 returned SERVFAIL for unconfigured and expired zones
 - Changed in 4.0.3 to return REFUSED for unconfigured zones
- Several NSEC3-related bugs in both Knot DNS and NSD 4
- Knot DNS’s zone parser was rather strict
- Some types of zone transfers crashed Knot and corrupted NSD’s database
Managing diversity

- All software packaged into RPMs and kept in our private repository
- Ansible for configuration
 - Inventory tells server its role
 - Roles are mutually exclusive
- TSIG keys, zone list and masters stored in YAML files
- Jinja2 templates for each name server type
 - Expanded on server and filled with zone data
- Trivial to switch name server software