Online Banking Fraud: Extracting intelligence from Zeus configuration files

Samaneh Tajalizadehkhoob, Hadi Asghari, Carlos Gañán, Michel van Eeten

Delft University of Technology

The online banking fraud problem

- Fraud statistics for the Single European Payment area are around €800 million (European Central Bank, 2014)
- Different banks with different properties are targeted around the world
- No patterns have been found till now
- Little information is published about the targeted domains
- Even when the information exists, it is incomplete and under/over counted

Man in the Browser

Website seen by Customer	Website seen by Bank
Anybark - Windows Internet Explores	C Anybonk - Windows Internet Explorer
The Edit University Tools Table	File Edit View Provides Tools Help
🛊 🔅 gilanybark 🦳 🖄 🖞 👘 "	🔆 🔶 👩 Arisbank. 🦳 🔄 🖓 - 🖾 - 👘 - 🦈
Online banking	Online banking
Payment Details	Payment Details
To pay someone please enter the following details	To pay someone please enter the following details
Payee name: Gas bill	Payee name: Fraudster
Payee account no.: 123456	Payee account no.: 654321
Payee sort code: 112233	Payee sort code: 445566
Amount: 50	Amount: 6000
Next	Next
K S Ny Conputer K, L60%. *	Customer makes the transfer but malware changes destination and amount

Methodology

Fox-IT provided access to 11,000 records of Zeus financial malware configuration files from 2009 to 2013Q1. The file contains instructions on:

- which target to attack
- what user data to gather
- how to do so

<pre>set_url */my.ebay.com/*CurrentPage=MyeBayPersonalInfo* <flag_get><flag_i< pre=""></flag_i<></flag_get></pre>	LOG>
data_before	
Registered email address* <img*></img*>	
data_after	
data_inject	
e-mail:	
<pre>set_url *.ebay.com/*eBayISAPI.dll?* <flag_get><flag_log></flag_log></flag_get></pre>	
data_before	
<pre>(</pre>	
data_after	
data_inject	
Feedback:	
set_url <u>https://www.us.hsbc.com/*</u> <flag_get><flag_log></flag_log></flag_get>	
data_before	
data_after	

Questions

- What type of domains are targeted via ZeuS?
- Are some financial services targeted more often than other?
- Why?
- How are new targets identified over time?
- What is the impact on attack volume of attack code becoming more easily availabe over time?
- How quickly does attack code (web injects) develop over time?

Findings - targeted domains

- Over 4 years, we saw 2,412 unique domains targeted via14,870 unique URLs
- Located in 92 countries
- From 2,131 unique botnets (based on different encrypted command and control channels)
- Over 74% of the targets are financial service providers

Categories of domains based on Alexa

Findings - attack persistency

Online Banking Fraud and Target Selection by Cybercriminals

7

Is target popularity related to its size?

• There is a minor, but significant relationship between the size of a domain (measured by Alexa ranking) and the persistency of attacks

Is target popularity related to its size?

- United States: out of around 6,500 active financial institutions, only 175 have been targeted
- Almost all of the larger banks (48 of the top 50) are attacked
- Size acts as a threshold for being attacked; it does not predict attack intensity

Number of active botnets

Trial of new targets

- On average, 601 domains each month become targets of Zeus attacks
- Out of these on average, 112 of these are new domains each month
- There is a stable ceiling in the number of attacked domains, as well as in the trial and error or new targets

Trial of new domains per month

Trial of new targets

- Seeking new targets across a larger area
- In 2012, 17 new countries were targeted, but 18 countries from the previous years were no longer being attacked

Summary

- Not every Financial Service Provider is equally popular among criminals
- Size is a threshold for getting attacked, but does not predict the intensity
- Attack persistence varies widely. Half the domains are targeted briefly, mostly likely in search of new targets
- A ceiling exists in the overall number of domains simultaneously attacked, even after the ZeuS code leak

Summary

- Attacks to the same URL are more than 90% similar, no matter the length of the inject; this suggests code sharing, stealing or selling (inject-code-as-a-service) among criminals;
- Attacks (and defense!) is less dynamic than often presumed
- The underground market for bots and malware may have lower economic entry barriers for criminals and reduced costs in the value chain of attacks, but it has <u>not</u> increased attack volume (number of botnets) or the number of targets
- Attack ceiling suggests other bottlenecks in the criminal value chain, such as in cash out operations and mule recruitment
- Defense should focus on these bottlenecks, not on reducing abundant attacker resources (i.e., bots, malware and injects)

Question?

Inject code development over time

- The data contains 1.1m target URLs with 'inject' codes.
- On average, each inject code is repeated 27 times; 43% repeated over 1,000 times, and just 1% appears once!
- Substantial amount of inject code sees no or very little development over time
- High level of code re-use suggests sharing, stealing or selling code across attackers

Inject Code Size vs. Repetition

Next steps

- Map security properties of attacked services (e.g., authentication mechanism)
- Study interaction among attack and defense (e.g., deterrence, waterbed effect?)
- Statistically model factors that determine fraud levels in countries
- Identify most cost-effective countermeasures

