
# ETHERNET VPN (EVPN) OVERLAY NETWORKS FOR ETHERNET SERVICES

Greg Hankins <greg.hankins@alcatel-lucent.com> RIPE 68

#### **AGENDA**

- 1. EVPN Background and Motivation
- 2. EVPN Operations
- 3. EVPN Use Cases

# ETHERNET SERVICES TECHNOLOGY CONTINUES TO EVOLVE HIGHER SPEEDS AND ADVANCED CARRIER-GRADE SERVICES



"The widespread adoption of Ethernet L2VPN services and the advent of new applications for the technology (e.g., data center interconnect) have culminated in a new set of requirements that are not readily addressable by the current Virtual Private LAN Service (VPLS) solution." — draft-ietf-l2vpn-evpn-req

#### WHY ANOTHER VPN TECHNOLOGY?

- MPLS/VPLS and PBB are both proven technologies for Ethernet services, but
  - The control plane approach hasn't changed
  - Still relies on flooding and learning to build the Layer 2 forwarding database (FDB)
- EVPN introduces a new model for delivery of Ethernet services
  - Inherits a decade of VPLS operational experience in production networks
  - Incorporates flexibility for service delivery over Layer 3 networks
  - Abstracts and separates the control and data planes: MP-BGP carries MAC/IP routing information, choice of data plane encapsulation
- Enables network operators to meet emerging needs in their networks
  - Data center interconnect (DCI)
  - Cloud and virtualization services
  - Integrated Layer 2 and Layer 3 VPN services
  - Overlay technologies that simplify topologies, and remove protocols from the network



#### **EVPN KEY OPERATIONAL BENEFITS**

### Integrated Services

• Delivering Layer 2 and Layer 3 services over the same interface, VLAN and VPN

• L3VPN-like operation for scalability and control

### Network Efficiency

- Multihoming with all-active forwarding, load balancing between PEs
- Optimized multidestination frame (BUM) delivery
- More efficient hybrid service delivery over a single interface or VLAN

### Design Flexibility

- MPLS or IP data plane encapsulation choices
- VXLAN encapsulation enables EVPN over a simple IP network
- Simpler provisioning and management with a single VPN technology

### **Greater Control**

- MAC/IP provisioning enables programmatic network control
- Consistent signaled FDB in control plane vs. flood-and-learn FDB in data plane
- Proxy ARP/ND functionality allows PEs to respond to ARP/ND requests



#### **EVPN STATUS**

- Hot new technology in the IETF L2VPN WG
- Many mature base I-Ds and new I-Ds
  - draft-ietf-l2vpn-evpn base specification: WG last call for -07 on May 9, 2014
  - draft-ietf-l2vpn-evpn-req: no more changes expected
  - draft-ietf-l2vpn-pbb-evpn: no more changes expected
- Diverse authors on requirements and base specification
  - Vendors: Alcatel-Lucent, Cisco, Juniper
  - Network operators: Arktan, AT&T, Bloomberg, Verizon
- Shipping implementations
  - Alcatel-Lucent
  - Cisco
  - Juniper

draft-allan-l2vpn-mldp-evpn draft-boutros-l2vpn-evpn-vpws draft-boutros-l2vpn-vxlan-evpn draft-ietf-l2vpn-evpn draft-ietf-l2vpn-evpn-req draft-ietf-l2vpn-pbb-evpn draft-ietf-l2vpn-spbm-evpn draft-ietf-l2vpn-trill-evpn draft-jain-l2vpn-evpn-lsp-ping draft-li-l2vpn-evpn-mcast-state-ad draft-li-l2vpn-evpn-pe-ce draft-li-l2vpn-segment-evpn draft-rabadan-l2vpn-dci-evpn-overlay draft-rabadan-l2vpn-evpn-prefix-advertisement draft-rp-l2vpn-evpn-usage draft-sajassi-l2vpn-evpn-etree draft-sajassi-l2vpn-evpn-inter-subnet-forwarding draft-sajassi-l2vpn-evpn-ipvpn-interop draft-sajassi-l2vpn-evpn-vpls-integration draft-salam-l2vpn-evpn-oam-reg-frmwk draft-sd-l2vpn-evpn-overlay draft-vgovindan-l2vpn-evpn-bfd draft-zhang-l2vpn-evpn-selective-mcast draft-zheng-l2vpn-evpn-pm-framework



# EVPN DATA PLANES ONE EVPN CONTROL PLANE WITH MULTIPLE DATA PLANE OPTIONS

Control Plane

EVPN MP-BGP draft-ietf-l2vpn-evpn

Data Plane Multiprotocol
Label Switching
(MPLS)
draft-ietf-l2vpn-evpn

Provider Backbone Bridges (PBB) draft-ietf-l2vpn-pbb-evpn Network
Virtualization Overlay
(NVO)
draft-sd-l2vpn-evpn-overlay

- EVPN over MPLS for E-LAN services
- All-active multihoming for VPWS
- RSVP-TE or LDP MPLS protocols

- EVPN with PBB PE functionality for scaling very large networks over MPLS
- All-active multihoming for PBB-VPLS
- EVPN over NVO tunnels (VXLAN, NVGRE, MPLSoGRE) for data center fabric encapsulations
- Provides Layer 2 and Layer 3
   DCI and overlays over simple
   IP networks

#### EVPN CONTROL PLANE LEARNING WITH MP-BGP

- Brings proven and inherent BGP control plane scalability to MAC routes
  - Consistent signaled FDB in any size network instead of flooding
  - Even more scalability and hierarchy with route reflectors
- BGP advertises MACs and IPs for next hop resolution with EVPN NLRI
  - AFI = 25 (L2VPN) and SAFI = 70 (EVPN)
  - Fully supports IPv4 and IPv6 in the control and data plane
- Offers greater control over MAC learning
  - What is signaled, from where and to whom
  - Ability to apply MAC learning policies
- Maintains virtualization and isolation of EVPN instances
- Enables traffic load balancing for multihomed CEs with ECMP MAC routes

Route Distinguisher (8 octets)

**Ethernet Segment Identifier (10 octets)** 

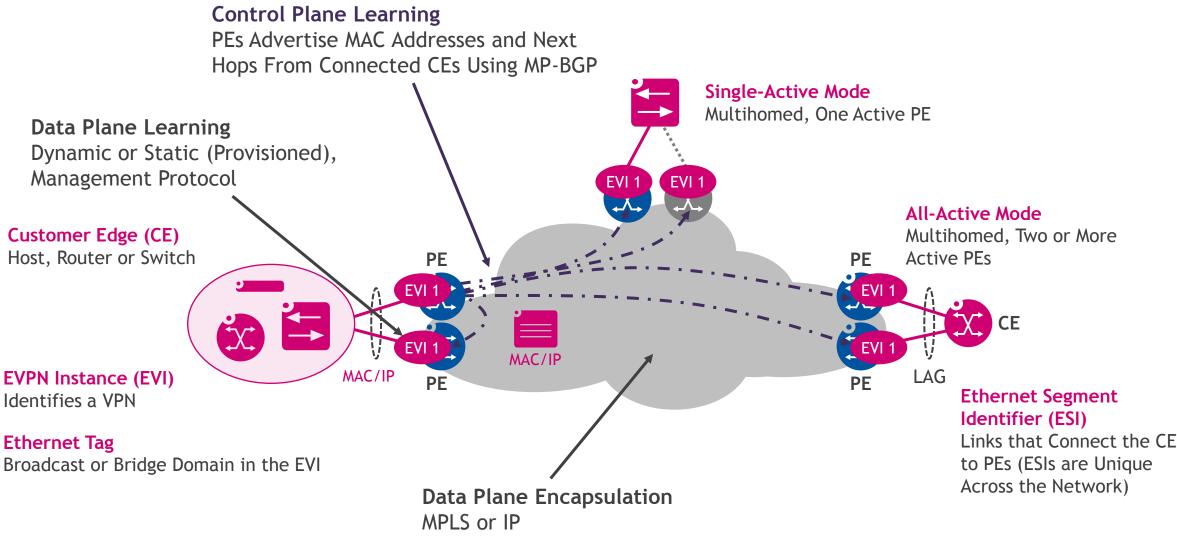
Ethernet Tag ID (4 octets)

MAC Address Length (1 octet)

MAC Address (6 octets)

IP Address Length (1 octet)

IP Address (0 or 4 or 16 octets)


MPLS Label1 (3 octets)

MPLS Label2 (0 or 3 octets)

MAC Advertisement Route
(Light Blue Fields are Not Used in all Data Planes)

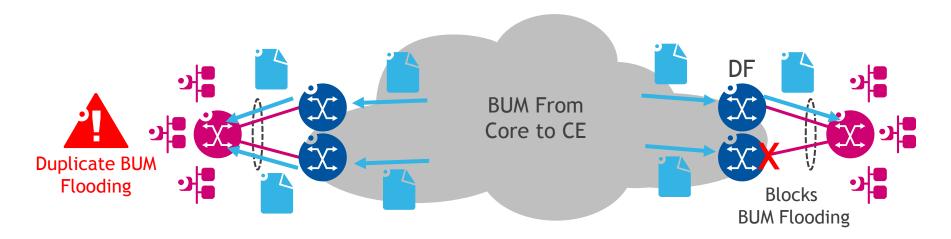


#### **EVPN CONCEPTS OVERVIEW**



### **EVPN SERVICE INTERFACES OVERVIEW**

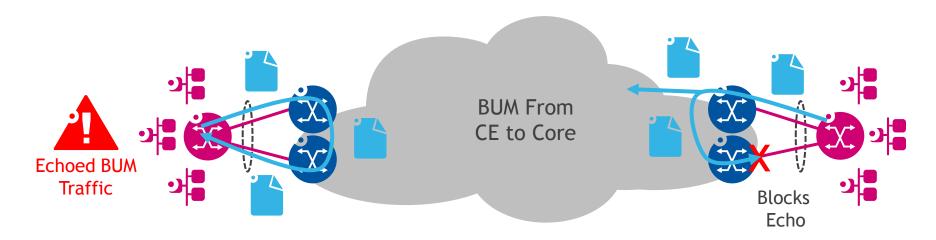
|                                  | VLAN Based<br>Service Interface                                      | VLAN Bundle<br>Service Interface                                                                                                            | VLAN Aware Bundle<br>Service Interface                                                   |
|----------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Service Interface<br>Diagram     | VID 11  VID 21  VID 21  VID 31  EVI 3  VID 32  VID 41  EVI 4  VID 42 | VID 11         Bridge Domain 1         VID 11           VID 21         VID 21         VID 31           VID 41         VID 41         VID 41 | VID 11  Bridge Domain 1  VID 12  VID 21  VID 31  VID 32  VID 41  Bridge Domain 4  VID 42 |
| Mapping Between VLAN ID and EVI  | 1:1                                                                  | N:1                                                                                                                                         | N:1                                                                                      |
| Customer VID<br>per EVI          | Single                                                               | Multiple                                                                                                                                    | Multiple                                                                                 |
| Bridge Domains<br>per EVI        | Single                                                               | Single                                                                                                                                      | Multiple                                                                                 |
| Overlapping MACs<br>Across VLANs | <b>✓</b>                                                             | *                                                                                                                                           | ✓                                                                                        |
| VLAN Translation                 | ✓                                                                    | *                                                                                                                                           | ✓                                                                                        |
|                                  |                                                                      |                                                                                                                                             |                                                                                          |


#### **AGENDA**

- 1. EVPN Background and Motivation
- 2. EVPN Operations
- 3. EVPN Use Cases

- Key features control plane features
  - All-Active Multihoming and Designated Forwarder Election
  - All-Active Multihoming and Split Horizon
  - Proxy ARP/ND and Unknown Unicast Flooding Suppression
  - Aliasing
  - MAC Mobility
  - MAC Duplication
  - MAC Mass-Withdraw
  - Default Gateway Inter-Subnet Forwarding
- Data planes
  - MPLS: EVPN-MPLS
  - PBB: PBB-EVPN
  - VXLAN: EVPN-VXLAN

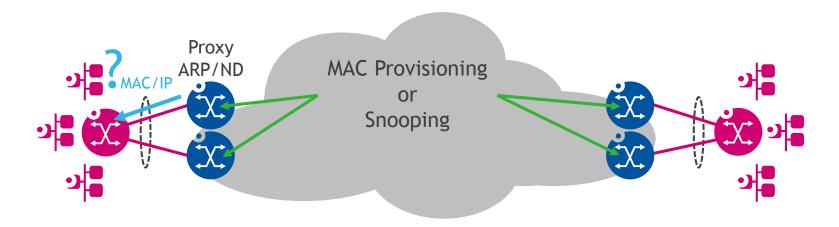



#### ALL-ACTIVE MULTIHOMING AND DESIGNATED FORWARDER ELECTION



- Avoids duplicate BUM flooding to all-active CEs
- PEs connected to multihomed CEs know about each other through ESI routes
- Elects a designated forwarder (DF) responsible for BUM flooding to the Ethernet segment
- Non-DF PEs block BUM flooding to the CE

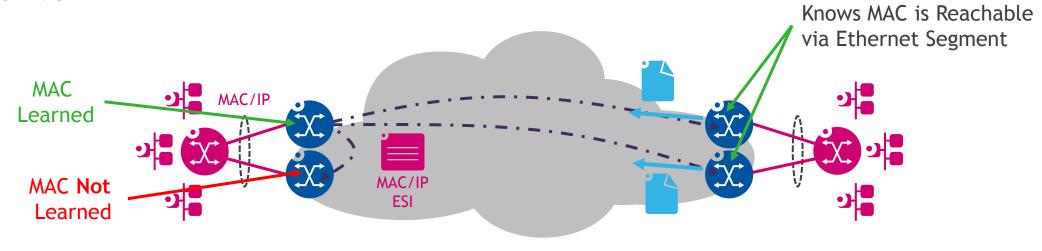
- Flexible DF election and functionality
  - Same DF for all ESIs
  - Different DF per ESI
- Unicast still follows all-active paths


#### ALL-ACTIVE MULTIHOMING AND SPLIT HORIZON



- Ensures that BUM traffic from an ESI is not replicated back to the same ESI to an all-active CE
- PE advertises a split horizon label for each all-active Ethernet segment
- When an ingress PE floods BUM traffic, it pushes the split horizon label to identify the source Ethernet segment
- Egress PEs use this label for split horizon filtering and drop packets with the label destined to the Ethernet segment
- Implicit split horizon for core, since PEs won't flood received BUM traffic back into core

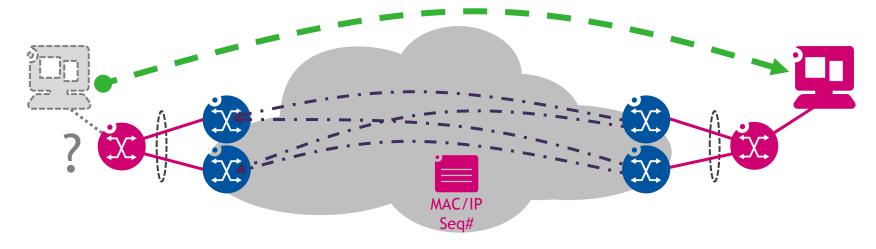



#### PROXY ARP/ND AND UNKNOWN UNICAST FLOODING SUPPRESSION



- ARP/ND is a security issue and a scalability issue in large networks
  - Unknown unicast traffic levels, especially in large data center and IXP networks
- We really don't need it anymore in orchestrated or provisioned networks where all MACs/IPs are known
- EVPN can reduce or suppress unknown unicast flooding since all active MACs and IPs are advertised by PEs
  - PEs proxy ARP/ND based on MAC route table to CEs
  - ARP/ND/DHCP snooping optimizes and reduces unknown unicast flooding, useful in dynamic data center networks
  - Provisioning MAC addresses can reduce or eliminate unknown unicast flooding entirely
  - Can disable learning and snooping for programmatic network control



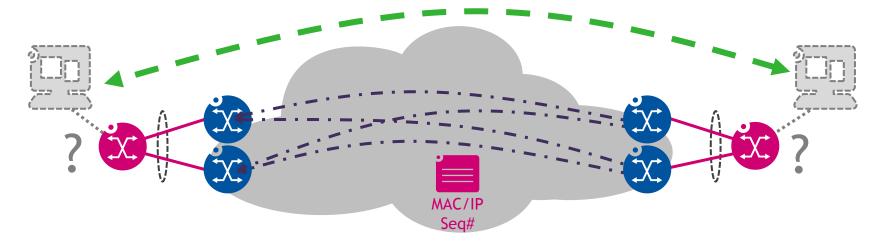

# **EVPN OPERATION**ALIASING



- Provides load balancing to all-active CE when the MAC address is only learned by one PE
  - First MAC learning by PE is usually from a Layer 2 broadcast (ARP/ND/DHCP)
  - Broadcasts are sent on the primary link in a LAG
  - Can have periods of time when the MAC is only learned by the PE connected to the primary link
- PEs advertise the ESI in MAC routes with all-active mode
- Remote PEs can load balance traffic across all PEs advertising the same ESI
  - Multipathing to CE always works, does not depend on random learning situations or hashing at CE
- Can also be used for a backup path in single-active mode with a standby link



# **EVPN OPERATION**MAC MOBILITY

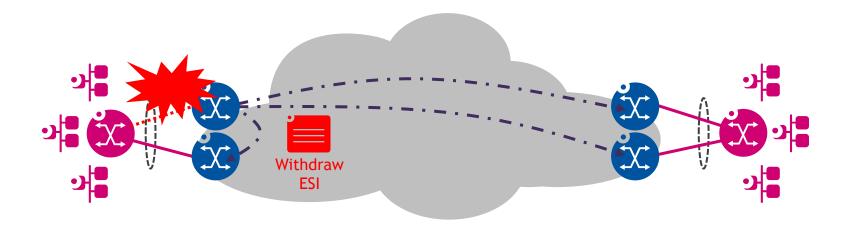



- MAC addresses may move between ESIs
- If local learning is used, the PE may not detect that a MAC address has moved and won't send a withdraw for it
- New PE sends a new MAC route
- Now there are two routes for the MAC address: an old wrong one and a new correct one

- Each MAC is advertised with a MAC mobility sequence number in an extended community with the MAC route
  - PE selects the MAC route with the highest sequence number
  - Triggers withdraw from PE advertising MAC route with the lower sequence number
  - Lowest PE IP address is used as the tie breaker if the sequence number is the same



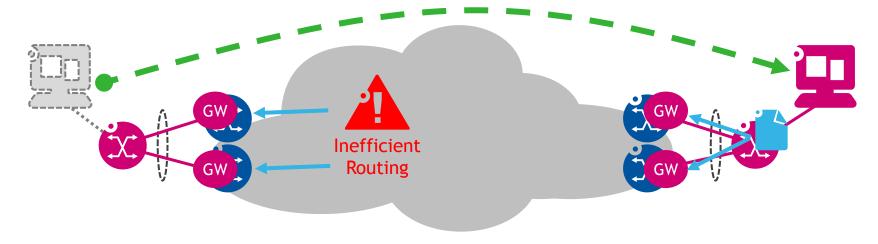
# **EVPN OPERATION**MAC DUPLICATION




- In certain bad situations, the same MAC could be learned by two PEs
  - MAC duplication
  - Rapid movement
  - Loops
- MAC duplication detection mechanism uses a configurable timer and move counter
  - Provides per-MAC duplication control vs. per-port control in Layer 2 bridging

- If five (N) moves (M) are detected in 180 s, then the MAC is considered duplicated (default timers)
- PEs stop advertising its route, PEs will use the route with the highest sequence number for forwarding
- Condition can be cleared manually or by implementing a retry timer to clear it automagically

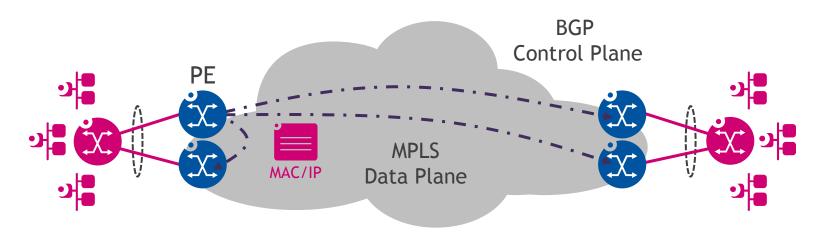



### **EVPN OPERATION** MAC MASS-WITHDRAW



- Provides rapid convergence when a link failure Remote PEs remove failed PE from the path affects many MAC addresses
- PEs advertise two routes
  - MAC/IP address and its ESI
  - Connectivity to ESIs
- If a failure affects an ESI, the PE simply withdraws the route for the ESI

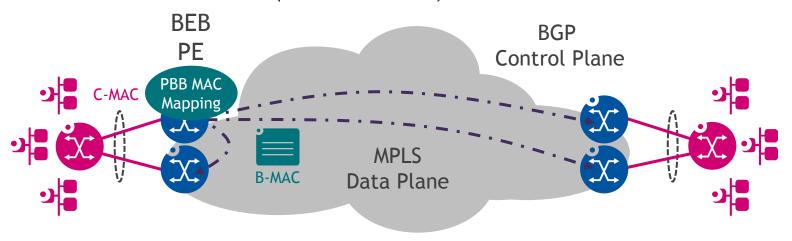
- for all MAC addresses associated with an FSI
- Functions as a MAC mass-withdraw and speeds convergence during link failures
- No need to wait for individual MAC addresses to be withdrawn


### DEFAULT GATEWAY INTER-SUBNET FORWARDING



- EVPN supports inter-subnet forwarding when IP routing is required
- No additional separate L3VPN functionality is needed, uses EVPN default gateway
- One or more PEs is configured as the default gateway, 0.0.0.0 or :: MAC route is advertised with default gateway extended community

- Local PEs respond to ARP/ND requests for default gateway
- Enables efficient routing at local PE
- Avoids tromboning traffic across remote PEs to be routed after a MAC moves, if all default gateways use the same MAC address

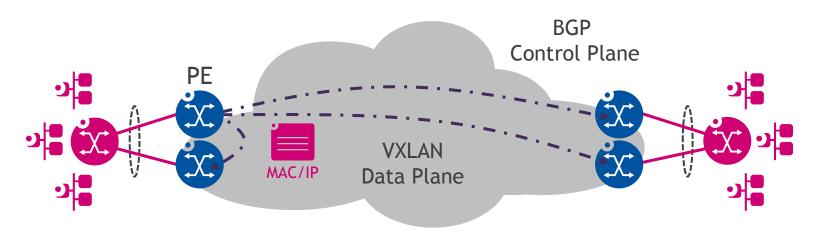

# EVPN MULTIPROTOCOL LABEL SWITCHING (MPLS) DATA PLANE DRAFT-IETF-L2VPN-EVPN (EVPN-MPLS)



- EVPN over an MPLS data plane is the original EVPN solution in the base specification
- Requires IGP, RSVP-TE or LDP, BGP
- No pseudowires
- MPLS runs in the core network's control plane and data plane
- Core network supports all the MPLS features we know and love, since EVPN uses MPLS as the data plane (TE, FRR, ...)

### PROVIDER BACKBONE BRIDGES (PBB) EVPN DATA PLANE

DRAFT-IETF-L2VPN-PBB-EVPN (PBB-EVPN)



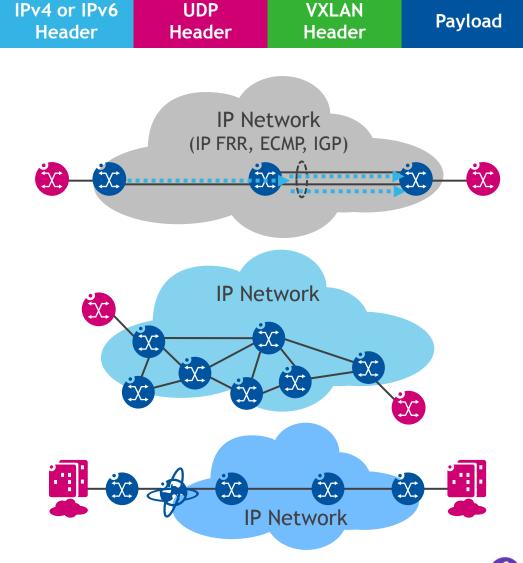

- PBB-EVPN combines IEEE 802.1ah PBB with EVPN
- PEs are PBB Backbone Edge Bridges (BEB)
- Reduces number of MACs in EVPN by aggregating customer MACs with backbone MACs
  - Same concept as route aggregation in IP

- Scales EVPN networks to a very large number of MACs
  - PEs only advertise backbone MACs with BGP
  - Customer MAC and backbone MAC mapping is learned in the data plane
  - Useful for providing services to networks where the MACs are not under your control
- MPLS runs in the control plane and data plane



# EVPN VIRTUAL EXTENSIBLE LAN (VXLAN) DATA PLANE DRAFT-SD-L2VPN-EVPN-OVERLAY (EVPN-VXLAN)

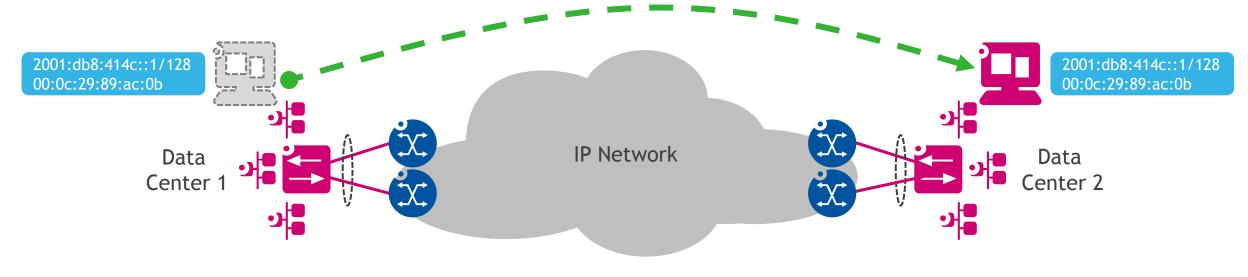



- EVPN-VXLAN uses EVPN over a VXLAN data plane
  - VXLAN is typically used for data center extension over WAN
  - Can also be used as an overlay in any IP network for IP/Ethernet services
  - Useful when MPLS is unavailable or unwanted
  - Alternative to NVGRE or MPLSoGRE (NVO3)
  - PIM is not needed with ingress BUM replication

- VXLAN provides the Layer 2 overlay over IP
  - IP reachability is required between PEs
  - EVPN uses BGP control plane for MAC route advertisements
  - VXLAN data plane uses UDP to encapsulate the VXLAN header and Layer 2 frame
- Provides all the benefits of EVPN for DCI and virtualized networks



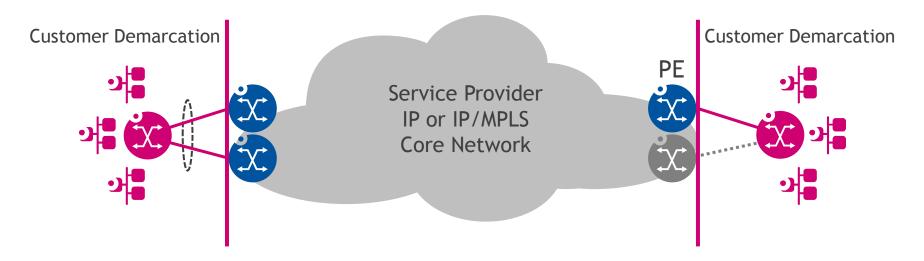
#### VXLAN DATA PLANE FLEXIBILITY


- VXLAN encapsulates Ethernet in IP
  - Runs over IPv4 or IPv6 and uses UDP
  - Source port in ranges 49152 65535 is a hash of fields from the encapsulated frame to provide load balancing entropy
  - Destination port is 4789
  - 8 byte VXLAN header provides 24 bit VXLAN Network Identifier (VNI) and flags
- VXLAN is routable with IP, so the underlay network may be any network that uses existing resiliency and load balancing mechanisms
  - ECMP
  - IGPs/BGP
  - IP FRR
- VXLAN tunnel endpoints can be on network equipment or computing infrastructure
  - Deliver a VPN to a hypervisor attached to a VM



#### **AGENDA**

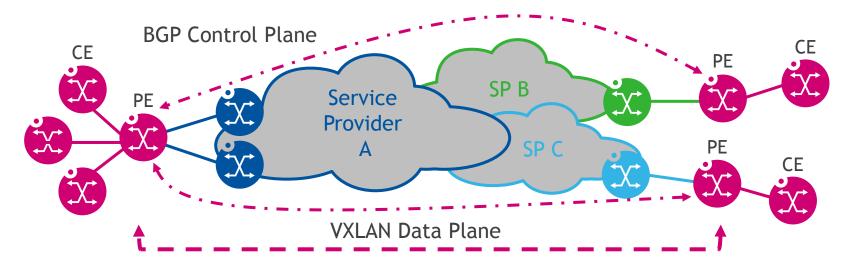
- 1. EVPN Background and Motivation
- 2. EVPN Operations
- 3. EVPN Use Cases


#### LAYER 2 OR LAYER 3 DATA CENTER INTERCONNECT



- Enables scalable Layer 2 or Layer 3 DCI services for virtualized data centers
- IP/MAC mobility for VMs that move between data centers
  - Faster moves while maintaining correct FDB on all routers
- Local IP gateway at each PE optimizes routing

- Provides all the benefits of EVPN for DCI and virtualized networks
  - All-active multihoming
  - Eliminates ARP/ND flooding for MAC learning
  - Integrated Layer 2 switching and Layer 3 routing over the same interface or VLAN


# BUSINESS SERVICES AND INFRASTRUCTURE NETWORKS LAYER 2 AND LAYER 3 SERVICES



- EVPN enables service providers to offer integrated Layer 2 and Layer 3 services
  - Single interface, single VLAN to customer
  - One technology for both services, no need for multiple VPN protocols
  - All-active or single-active PE to CE connection

- EVPN service can be provided over any core network
  - MPLS core can use EVPN-MPLS
  - IP core can use EVPN-VXLAN

# SITE TO SITE NETWORKS OVER IP FLEXIBLE LAYER 2 AND LAYER 3 NETWORKS



- EVPN-VXLAN works over any IP service to provide a flexible site to site network
- Just requires IP connectivity between sites, no MPLS or any special configuration by IP service provider
  - Service provider network is transparent to EVPN
  - EVPN overlay is transparent to service providers

- VPN routing between endpoints can be controlled with BGP and routing policies to service providers
- Routing and MAC/IP advertisement within EVPN controlled via IBGP between PEs

#### **SUMMARY**

- EVPN provides next-generation VPN solutions for Layer 2 and Layer 3 services over Ethernet
  - Consistent signaled FDB in control plane using MP-BGP vs. flood-and-learn FDB in data plane
  - L3VPN-like operation for scalability and control
  - Flow-based load balancing and all-active multipathing
  - Delivering Layer 2 and Layer 3 services over the same interface, VLAN and VPN
  - Simpler provisioning and management with a single VPN technology
  - ARP/ND security and MAC provisioning
  - MPLS or IP data plane encapsulation choices

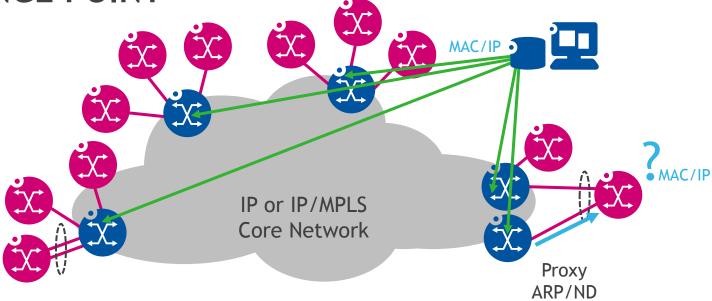
- More information
  - IETF Layer 2 Virtual Private Networks (l2vpn)
     Working Group
     http://datatracker.ietf.org/wg/l2vpn/
  - Requirements: draft-ietf-l2vpn-evpn-req
     <a href="http://tools.ietf.org/html/draft-ietf-l2vpn-evpn-req">http://tools.ietf.org/html/draft-ietf-l2vpn-evpn-req</a>
  - Base specification: draft-ietf-l2vpn-evpn
     http://tools.ietf.org/html/draft-ietf-l2vpn-evpn
  - Use case examples: draft-rp-l2vpn-evpn-usage
     http://tools.ietf.org/html/draft-rp-l2vpn-evpn-usage



www.alcatel-lucent.com

**QUESTIONS?** 

### **EVPN REQUIREMENTS AND BENEFITS**

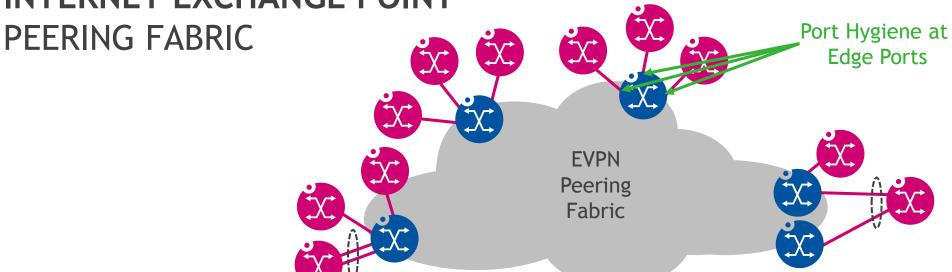

|                      | VPN Requirements                                          | VPLS     | EVPN | What does it do for me?                     |
|----------------------|-----------------------------------------------------------|----------|------|---------------------------------------------|
| Address<br>Learning  | Control Plane Address Learning in the Core                | ×        | ✓    | Greater Scalability and Control             |
| Provisioning         | L3VPN-Like Operation                                      | ×        | ✓    | Simpler Provisioning and Automation         |
|                      | Auto Discovery and Configuration                          | PEs Only | ✓    | Simpler Provisioning and Automation         |
| Resiliency           | Active-Standby Multihoming (Service-Based Load Balancing) | ✓        | ✓    | Standby Redundancy                          |
|                      | All-Active Multihoming<br>(Flow-Based Load Balancing)     | ×        | ✓    | Active Redundancy and Link Utilization      |
| Services             | VLAN Based Service Interfaces                             | ✓        | ✓    | Virtualization and Advanced Services        |
|                      | VLAN Aware Bundling Service<br>Interfaces                 | ×        | ✓    | Virtualization and Advanced Services        |
|                      | Inter-Subnet Forwarding                                   | ×        | ✓    | Layer 2 and Layer 3 Over the Same Interface |
| Flow<br>Optimization | Proxy ARP/ND                                              | ×        | ✓    | Security and MAC Provisioning               |
|                      | MAC Mobility                                              | ×        | ✓    | Virtualization and Advanced Services        |

### **EVPN NLRI ROUTE TYPES AND EXTENDED COMMUNITIES**

| Route Type                 | Route Description                     | Route Usage                                    | Reference                                         |
|----------------------------|---------------------------------------|------------------------------------------------|---------------------------------------------------|
| 1                          | Ethernet Auto-Discovery (A-D) Route   | Endpoint Discovery, Aliasing,<br>Mass-Withdraw | draft-ietf-l2vpn-evpn                             |
| 2                          | MAC Advertisement Route               | MAC/IP Advertisement                           | draft-ietf-l2vpn-evpn                             |
| 3                          | Inclusive Multicast Route             | BUM Flooding Tree                              | draft-ietf-l2vpn-evpn                             |
| 4                          | Ethernet Segment Route                | Ethernet Segment Discovery, DF Election        | draft-ietf-l2vpn-evpn                             |
| 5                          | IP Prefix Route                       | IP Route Advertisement                         | draft-rabadan-l2vpn-evpn-prefix-<br>advertisement |
| Extended<br>Community Type | Extended Community Description        | Extended Community Usage                       | Reference                                         |
| 0x06/0x01                  | ESI Label Extended Community          | Split Horizon Label                            | draft-ietf-l2vpn-evpn                             |
| 0x06/0x02                  | ES-Import Route Target                | Redundancy Group Discovery                     | draft-ietf-l2vpn-evpn                             |
| 0x06/0x00                  | MAC Mobility Extended Community       | MAC Mobility                                   | draft-ietf-l2vpn-evpn                             |
| 0x03/0x030d                | Default Gateway Extended<br>Community | Default Gateway                                | draft-ietf-l2vpn-evpn, bgp-extended-communities   |

INTERNET EXCHANGE POINT

PEERING FABRIC




- Provides Layer 2 interconnection over an EVPN peering fabric
  - IP/MPLS core network with MPLS data plane
  - IP core network with VXLAN data plane
- Supports single or all-active multihoming to the peering fabric VLAN
- Supports PNIs and/or other overlay VLANs

- Enables precise fine-grained control over MAC addresses
  - Static MAC provisioning and proxy ARP/ND from PEs can reduce or eliminate unknown unicast
  - Per-MAC loop control vs per-port or per-VLAN isolates potential loops
  - Works together with edge port hygiene features to provide a clean and secure peering fabric



INTERNET EXCHANGE POINT



- EVPN provides the technology for the peering fabric and MAC/IP management over the core
- Still need to use existing port security mechanisms and follow BCPs for port hygiene and allowed traffic
  - Typically allow IPv4, IPv6, ARP and block unwanted traffic types
  - MAC address locking
  - BUM control